Mixed-Initiative Control for Collabor ative Counter mine Operations

David J. Bruemmer, Douglas A. Few, Curtis Nielsen, Miles C. Walton
Idaho National Laboratory
Idaho Falls, ID 83415

Key Words

Military de-mining, mixed-initiative, collaborativeorkspace, adjustable autonomy,
performance and evaluation

Abstract

This paper discusses experimental results achibyaging mixed initiative robot behavior to
address the challenges of detecting and markingedunetal landmines. Mission requirements
pertaining to communication bandwidth and operatarklioad precluded conventional
approaches to communication and tasking. Instedthraework for sharing control and
communicating “behavior intent” was developed t@tinate activities of intelligent unmanned
air and ground vehicles. To alleviate dependencglohal positioning, collaborative tasking
tools were developed that use common referencéspaithe environment to correlate disparate
internal representations (e.g. aerial imagery amdund-based occupancy grids). The behaviors
allow each team member to act independently wlilenaunicating environmental features and
task intent at a high level. Results show thatréselting system produced a significant decrease
in task time to completion and a significant ingean detection accuracy and reliability when
compared to the current military baseline. As regdj the experiment was accomplished
without dependence on global positioning or corduinetwork communication. These findings
indicate that by providing an appropriate meansi@rieave human and robotic intent, mixed
initiative behaviors can address complex and aitimissions where neither teleoperated nor
autonomous strategies have succeeded.
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| ntroduction

Landmines are a constant danger to soldiers deongict and to civilians long after conflicts
cease, causing thousands of deaths and tens cfatidsi of injuries every year. It is estimated
that more than 100 million landmines are emplacedrad the world and, despite humanitarian
efforts to address the problem more landmines airgglemplaced daily than are being removed
[38]. Often humans are used to perform de-miningyeat risk to life and limb. The task is
extremely dangerous and tedious and human perfaertands to vary drastically depending on
factors such as fatigue, training, and environmeaditions.

It has long been thought that landmine detecti@niappropriate application for robotics
because it is a dull, dirty, and dangerous taskR42, However, the reality has been that the
critical nature of the task demands a reliabilitg performance that neither teleoperated nor
autonomous robots have been able to provide [28oAomous strategies based on assumptions
of accurate positioning and sensor information haesen unreliable. On the other hand,
teleoperated strategies are severely limited byabtthat the combined demands of navigation,
sweep coverage and signal interpretation severaglaad the human operator.

In response to these shortcomings, we will preaenixed-initiative approach that has been
developed that allows air and ground vehicles dsasegemote human operators to work

together to accomplish a countermine mission. Rebees at the Idaho National Laboratory
(INL), working with Carnegie Mellon University (CMJand the Space and Naval Warfare



Systems Center (SSC), San Diego have developestensyhat combines the bird’s eye
perspective from an unmanned aerial vehicle witlab®r-based autonomous search and
detection capabilities on a ground robot to idgraiid mark buried landmines. The effectiveness
of the resulting system was rigorously evaluatetheyArmy Test and Evaluation Command
(TECO) and by the U.S. Army Maneuver Support Ce(Me&kNSCEN) at Ft. Leonard-Wood.

Although the formal countermine mission requirerseanaide no explicit reference to the level of
autonomy required for the task, the research reddréere indicates that operational success was
possible only through the use of a mixed-initiaproach that defined the responsibilities and
roles of the human, air vehicle, and ground vehitlis important to note that humanitarian de-
mining is significantly different from military deimng. Antonic, Ban, and Zagar point out that
“Military needs to breach a narrow path throughrtieefield as fast as possible and with
acceptable loses due to missed mines. On the dp®ide, humanitarian demining requires
100% detection and removal of all mines on largadrf2]. This research uses information from
humanitarian de-mining but the task itself is basednilitary demining.

The paper proceeds as follows. We will first dischackground on using robots for
humanitarian demining and mixed initative. Then Wk discuss the mission requirements and
show how they evolved based on available technoMg/then present the solution to the
countermine problem on unimproved dirt roads. Tystesn used to solve the countermine
problem is then presented and we discuss the emeetiand results. Finally, the paper is
concluded and directions of future work are prodide

Background

Many research papers describe the challenges goadements of humanitarian demining along
with suggesting possible solutions [2, 24]. Effadsmprove robotic de-mining have resulted in
the design of a new system, but have left thaesysinproven in physical environments [3, 10,
14, 20, 28, 32]. The development of systems witlpoaving their usefulness in domains leaves
one to question how effective the solution is rea situation. In fact, Trevelyan believes that
robots cannot be a solution to humanitarian dergibecause the sensor technology is not
sufficient, there are huge varieties of land mitheg defy automated solutions, and robots are
likely to be too expensive for practical operatiamsome contries [41]. It is true that automated
solutions will be difficult to come by, but perhapise focus is on making systems rely too much
on automation when a better approach might bedatera system that requires some human and
some robot initative.

Many scientists have pointed out that it is cl&éat benefits are to be gained if robots and
humans work together as partners [13, 21, 35,T3¥kuccessfully accomplish this, the robot
must have some level of automation or else it wsuitply be a remote-controlled vehicle that
extends the capabilities of the operator but nethaitiative of its own.

Parasuraman et al. observe that “automation daes@®ly supplant but changes human
activity and can impose new coordination demandsherhuman operator” [30]. They also note
that when designing human robot systems, it is mapb to consider which system functions



should be automated and to what extent. Steinfélfildlso comments that it would be
particularly useful to know the the ‘optimal’ autimy state for a given task. Determining good
levels of robot autonomy for a particular tasknsmportant decision that is often approached by
asking which skills the operator and robot have ttigiding the task accordingly [19, 31, 35].
The appropriate use of autonomy may stem from aenstanding of how and why autonomy
behaves [29, 39]. Other views about how the triahcautonomous robot can be established
include making a reliable system, and making thetstten processes of the robot more
transparent [5].

One solution to provide the appropriate level dbaomy is to provide adjustable autonomy or
sliding scale autonomy [4, 6, 11, 15, 16, 33, 36lese approaches enable the operator to change
the level of autonomy with which the robot operafdse challenge with such an approach is that
it is often difficult for the operator to know witidevel of autonomy is the best for the current
situation that the robot is in. In fact, this sadatrequires the operator to have very good
situational awareness of the robot, the task, heeghvironment in order to give correct changes
in autonomy at the correct time. This places a hhegponsibility on the sholders of the end user
as they are required to understand all the leviedsitmmation within the entire system, how to
activate and switch between autonomy levels, anehveach level is particularly applicable.

In previous user studies it was observed thata fgiven task, a particular interface design [25—
27] or autonomy configuration [6—8] provided bettesults than another configuration.
Moreover, when end users were given a completesystith multiple, adjustable levels of
autonomy and different interface designs, it wdfscdit for novice robot operators to fully grasp
the posibilities of the system or even understahdtyarticular aspects were most beneficial to
their success [43].

Towards this end, our solution has been to develfiped mixed-initative strategy that requires
an understanding of the task and the responsilofigach of the agents in the system
beforehand, such that when the task is perfornmedtiasks for each agent are understood. This
approach is different from traditionaly mixed-iritee approaches in HCI where attempts to
solve a problem occur gradually through collaborabetween a human and the system [1, 17,
18, 34].

Mission Requirements

The purpose of this research was to evaluate theteness and suitability of an Autonomous
Robotic Countermine (ARCM) System to proof a 1-meismounted lane by searching for,
marking, and reporting detected landmines and magritie boundaries of the proofed lane. The
intent was to provide the current force with areefiive alternative to manned dismounted lane
countermine operations. MANSCEN determined thdwoaigh accurate digital marking of
landmine locations within a terrain map was desisegurate physical marking of the mine
locations was considered essential for the misgqoirements.

To develop a successful solution required a coraplatierstanding of the end-user’s goals and
requirements. This was accomplished with overye@rs of dialogue with MANSCEN to



develop and refine the mission requirements basezhpabilities and limitations of various
technologies. Furthermore, numerous conversatiathsthe Night Vision and Electronic Sensor
Directorate (NVESD) at Ft. Belvoir were requireddiscuss the capabilities and limitations of
current sensor technologies.

Previous studies by MANSCEN had shown that realldvanissions would involve limited
bandwidth communication, inaccurate terrain dathsporadic availability of GPS.
Consequently, task constraints handed down from MBNN demanded minimal dependence
on network connectivity (e.g. wireless Ethernegntcalized control (e.g. off-board motion
planning), global positioning (GPS), and accueaf#iori terrain data.

MANSCEN requirements also emphasized the neecdethraed operator workload and training
requirements. The military operational requiremeltisument (ORD) specified that within the
future combat system (FCS) unit of action, thereildmo longer be dedicated engineers focused
on the countermine mission; instead, any soldi¢hiwithe unit of action should be able to task
the system to prove an area or lane from a grabl@peesentation of the local environment.

A final requirement was that the robotic systenabke to handle cluttered outdoor
environments. Although the robot platforms and eessite were important considerations, the
goal of this effort was not focused on a particutdoot platform or a particular countermine
sensor; rather, the stated goal was to “providéapte re-configurable tactical behaviors to
enable teams of small UGVs and UAVs to collabosdyivvonduct semi-autonomous
countermine operations.”

Mission Scenario

A fundamental challenge with the strict requirersamas how to provide a means for the user to
task the robot without dependence on eithpriori terrain data or global positioning. The
reason this was difficult is because there is ngpte correlation between the operators
understanding of the physical world and the robdiggtal representation of the world. To
operate without dependence on global positionimg ground robot had the ability to build a
digital, occupancy map that could be shared wighnihman operator. This provided some
context for the operator to task the robot howetrer ,context was limited to the parts of the
environment that had already been explored bydhetr To improve the operator’s ability to
task the robot in previously unexplored areasas wetermined that an unmanned air vehicle
would be used to survey surrounding terrain, lopatential minefields and provide imagery
that could be used for tasking and monitoring wthke ground robots perform their search and
detection mission.

The mission scenario which emerged included tHeviahg task elements.

a. Deploy a UAV to survey terrain surrounding arstaip.

b. Analyze imagery to identify possible minefields.

c. Use common landmarks to correlate UAV imagey &V occupancy map
d. UGV navigates autonomously to possible minefield

e. Perform UGV search behavior to physically argitally mark mines.



f. Mark dismounted lane through suspect terrain.

This mission scenario posed an interesting mixédxiive challenge. The military requirement
dictated “semi-autonomous control,” meaning thathiiman must be kept in the loop, but that
time spent at the controls should be minimized shecific requirement was given regarding the
nature of tasking or monitoring or what the operatas required to do, just that they had to be
there. To orchestrate the operator and roboti@tivie, it was necessary to ask some basic
guestions for each task element. First, it was ssang to consider performance and empirically
assess whether the operator or robot was betteafdr task element. Secondly, it was necessary
to consider the workload costs for the operatortaedobot since one of the mission
requirements was to minimize operator workloadtlyathe benefit to using the operator or

robot for the task was compared against the casbbiising the operator or robot for the task.

Efforts to answer these questions significantfjuenced the mixed-initiative framework
employed. For example, the visual analysis in elr(l® was originally intended to be an
automated process, using change detection softiareould analyze suspect terrain with no
human intervention. In reality, real world experimtegion showed that the change detection
software, when deployed from unmanned air vehidesld not reliably ascertain the possible
minefield locations. Instead, it was determined thanan image understanding was a superior
asset and required minimal operator time. Consdty¢ne mission scenario was modified to
allow the human to identify the possible minefieldghin the mosaiced aerial imagery and task
the UGV with either a single click to specify tlerinus of a lane or by specifying the vertices
of a polygon around a suspected minefield.

The mixed-initiative used to solve the missionuiegments was based on determining
what tasks should be performed by each of the adkah developing the system to support the
performance of the agents for those tasks. Othroaches to mixed-initiative are more
interested in a collaboration or cooperative probsolving between agents where a robot and
human hold a dialog about a problem [13]. The$gtisms are most useful when the intelligent
system cannot know the operator’s intentions ogthed of the task [18]. However, in this
particular research, the task was well definedthedjoals well defined. Therefore, our use of
mixed-initiative has been to define the tasks ler different agents.

System Components

Our solution for the countermine experiment diseddsere builds on several years of spiral
development to evaluate and improve robot beha@ndsinterface tools in support of remote
vehicle operation. The solution is applicable beseatisupports the MANSCEN requirements of
minimal dependence on networking, centralized @n@PS, and prior information about the
environment. A series of human participant stutieege demonstrated that robust robot
behaviors and interface methods can provide resluati operator workload, operator error,
communication bandwidth, and can increase taskiefffty and the operator’s subjective feeling
of control [8]. However, previous experiments wimdted primarily to novice users and basic
navigation and search tasks. The countermine nmssfers an opportunity to apply the results
and experiences from our previous user-studiegdaadlopment on robot behaviors and
interface capabilities to a complex, end-to-endsiois. To accomplish this in a rigorous field
experiment, it was necessary to utilize vehicleéfptens, communications, and sensor payloads
that could meet the military requirements withoggwaming away any element of the task.



Air Vehicle Development

The air vehicle of choice was the
Arcturus T-15, a low cost, fixed wing
aircraft that can maintain long duratior ———
flights and carry the necessary video
and communication modules. For the
countermine mission, the Arcturus wags
equipped to fly two hour £
reconnaissance missions at elevations
between 200 and 500ft.

A spiral development process was
undertaken to provide the air vehicle
with autonomous launch and recover
capabilities as well as path planning,
waypoint navigation and autonomous
visual mosaicing. An air-powered
catapault launch system was develope
that allows autonomous deployment o
the air vehicle. After launch, a waypoint list ieeuted which allows the air vehicle to fly a
coverage pattern over the airstrip and autonomaralgct and mosaic real-time overhead aerial
imagery. Unfortunately, the mosaiced imagery wasacourate enough to meet the requirements
for this mission; therefore, single images weredusecorrelate the visual imagery with the robot
occupancy grid.

Figure 1: The Arcturus T-15 airframe and
launcher

Ground Vehicle Development

Carnegie Mellon University
developed two ground robots for this |
effort which were modified
humanitarian demining systems
equipped with inertial systems,
compass, laser range finders and a |
bandwidth, long range communicationg
payload. A MineLab F1A4 detector, |
which is a standard issue mine detectg
for the U. S. Army, was mounted on
both vehicles along with an actuation
mechanism that can raise and lower the  Figure 2: Countermine robot platform
sensor as well as scan it from side to
side at various speeds. A force torque sensor s&d to calibrate sensor height based on
sensing pressure exerted on the sensor when hésube ground. The mine sensor actuation
system was designed to scan at different speed®myong angle amplitudes throughout the
operation. SPAWAR developed a compact marking syshtat dispenses two different colors of
agricultural dye. Green dye was used to mark the Boundaries and indicate proved areas
while red dye was used to mark the mine locatidhg. marking system consists of two dye




tanks, a larger one for marking the cleared lartkaasmaller one for marking the mine location.
The system also included pumps, hoses and nozxleéspensing the dye, and a control system
that linked to the INL Robot Intelligence KernellkB.

The Robot Intelligence Kernel (RIK) supports beloasvifor navigation, search and detection
[12]. The behaviors include reactive primitivestsas guarded motion and obstacle avoidance
and increase in complexity to deliberative captibgisuch as path planning and area coverage.
Throughout this spectrum, the level of autonomy th@ossible increases with the layering of
behaviors. For instance, to accomplish the ovemlhtermine search behavior, the RIK must
arbitrate between obstacle avoidance, waypointgadian, path planning and mine detection
coverage behaviors, all of which run simultaneoasigt compete for control of the robot.
(Charts in Appendix A and B illustrate the interans between components of the RIK.)

The RIK provides adjustable autonomy includingfiing modes of interaction shown in Figure
3: High-Level Tasking Mode, Shared Mode, Safe Madeé Teleoperation [12].eleoperation
involves direct human control where the robot takenitiative.Safe Modevhere the robot
takes initiative only to protect itseBharedModewhere the human and robot may both take
initiative, andHigh-Level Tasking Modehere the human may only provide high level input
throughout the task. The robot may also be conéiddior a “fully autonomous” mode such that
the robot, upon startup, proceeds to explore the@@mment and detect mines with no human
input whatsoever. Note that each of these modeshmayged to accomplish the countermine
task. In fact, the dynamic autonomy offered byRii€ provides users with an ability to task the
system differently depending on the task constsauath as available operator workload and
communication connectivity.
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Figure 3: Four modes of operator control and tHeabm®rs that support them
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Figure 4: Initiative Chart

The chart shows how these different levels of axtgéon provide specific modes of mixed-
initiative control. An important aspect of this easch was determining how to combine initiative
from the human and robot. At times, the robot ningséble to refuse human control such as
when the mine sensor is engaged and the humamti®bog the robot motion directly, the robot
should be able to limit its speed in order to safldtect mines and avoid obstacles. An important
goal was to facilitate sharing responsibilitiesw®#n robot and operator such that the user could
provide input without interfering with the robo&ility to navigate, avoid obstacles, plan paths,
and detect land mines. For this countermine exp@rinHigh-Level Tasking Mode was
configured to limit the possibility for human inptat disrupt robot behaviors such as area



coverage or mine marking. Previous studies usimgiHievel Tasking Mode indicates that
appropriately constraining human initiative can roye task efficiency, reduce operator
workload and limit instances of operator confusaowl frustration [3]. Supporting mixed-
initiative in this way actually increases userglfieg of control by taking control away from
them at the right times. In this sense, the goabtgo blindly “mix” initiative, but rather to
define responsibilities that avoid conflict andioptze task allocation.

Interface Development

For the majority of robotic operations, video rensaihe primary means of providing
information from the remote environment to the apar[9]. Woods et al. describe the process
of using video to navigate a robot as attemptindriee while looking through a ‘soda straw’
because of the limited angular view associated thighcamera [42]. If teleoperation is
problematic for simple navigation tasks, it is eless appropriate for the countermine mission
where navigation is only one aspect of a complestatmon.

Unlike traditional interfaces that require transsios of live video images from the ground robot
to the operator, the representation used for ttpeement uses a 3D, computer-game-style
representation of the real world constructed orfth§26]. The digital representation is made
possible by the robot implementing a map-buildilggpathm and transmitting the map
information to the interface. To localize withingmap, the RIK utilizes Consistent Pose
Estimation (CPE) developed by the Stanford Reseastftute International [23]. This method
uses probabilistic reasoning to pinpoint the rabloication in the real world while incorporating
new range sensor information into a high-qualitgugancy grid map. When features exist in the
environment to support localization, this method baen shown to provide approximately +/-
10 cm positioning accuracy even when GPS is uraviail
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Figure 5: The Operator Control Interface is congatisf a number of windows
displaying information about the robot and its eawment, including an easy to use
computer-game-style interface.

The 3D representation also maintains the sizeioastips of the actual environment and the
robot, helping the operator understand the relgiogtion of the robot in the real world. By
changing the zoom, pitch and yaw of the digitafrespntation, the operator can use multiple
perspectives, including egocentric views that stimevenvironment from the perspective of a
particular robot as in Figure 5, to exocentric \8aWwat show a top-down view of the entire
environment as in Figure 6. Previous HRI studigb@ INL have shown that different
perspectives can be used to support different amgrmodes [8].

The default configuration of the interface usethteract with the ground robots consists of a
single touch screen display containing re-sizealihelows as shown in Figure 5. The upper
right-hand window contains sensor status indicaaos controls that allow the operator to
monitor and configure the robot’s sensor suiteeaded. The lower right-hand window pertains
to movement within the local environment and presichdications of robot velocity,
obstructions, resistance to motion, and feedbawk ftontact sensors. The interface indicates
blockages that impede motion in a given directismesl ovals next to the iconographic
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Figure. 6: The Interface above shows a seamlegmfo$ UGV terrain mapping, GPS
and real-time aerial imagery from an autonomousammad air vehicle.

representation of the robot wheels. Since the Vigdéations can sometimes be overlooked, a
force feedback joystick was also implemented testesovement in the blocked direction. The
joystick vibrates if the user continues to commaral’ement in a direction already indicated as
blocked. At the far right of the window the usenelect between different levels of robot
autonomy.

The interface supports the ability to input aeina@hgery into the 3D window. The interface will
automatically correlate geo-referenced imagery wWithrobot occupancy grid if GPS is available
on the robot. However, countermine requirementedttat geo-referenced imagery may not be
available. Even with geo-referenced imagery, realavtrials showed that the GPS based
correlation technique does not reliably providedbeuracy needed to support the countermine
mission. In most cases, it was obvious to the heerthe aerial imagery could be nudged or
rotated to provide a more appropriate fusion betwbe ground robot’s digital map and the air
vehicle’s image. As a result, correlation tools evdeveloped that allow the user to select
common reference points within both representatisBmamples of these common reference



points include the corners of buildings, fence post vegetation marking the boundary of roads
and intersections. In terms of the need to balancean and robot input, it was clear that this
approach required very little effort from the hun{artotal of 4 mouse clicks) and yet provided a
much more reliable and accurate correlation thaaudonomous solution.

To facilitate initiative throughout the task, thmtdrface must not only merge the perspectives of
robotic team members, but also communicate thatimtiethe agents. For this reason, the tools
used in High Level Tasking were developed whicbvalthe human to specify coverage areas,
lanes or target locations. Once a task is desiggeabe operator, the robot generates an ordered
waypoint list or path plan in the form of virtuadlored cones that are superimposed onto the
visual imagery and map data. The placement and ofdbese cones updates in real time to
support the operator’s ability to predict and ustkend the robot’s intent. Using a suite of click
and drag tools to modify these cones the humanndlrence the robot’s navigation and
coverage behavior without directly controlling ttedot motion.

Experiment

To test the proposed system and the mission regaits, an experiment was conducted October
20-28, 2005 at the INL’s UAV airstrip by personifreim the US Army MANSCEN and the
TECO, both based at Ft. Leonard Wood, Missouri. Ut Army TECO authored the
experiment plan, performed the field experiments eartified all data collected. The experiment
consisted of repeated trials of a dismounted rputging task, and data collected included
measurements of human, robot and overall team npeaface of the resulting system. Proofing a
dismounted lane required the robot to navigatetla fpea target location while physically and
digitally marking detected mines and the boundasfebe searched lane. A test lane was
prepared on a 50 meter section of an unimprovedahd near the INL UAV airstrip because

the wheeled UGV’s cross country mobility is limitefix inert A-15 anti tank (AT) landmines
were buried on the road between six and eight sxdeep. Note that six landmines in a 50 meter
section is considered a high mine concentratioxteBn runs were conducted with no obstacles
on the lane and 10 runs had various obstacleesedton the lane such as boxes and crates as
well as sagebrush and tumble weeds.

Procedure

The robot was prepared for operation at the beggaf each trial. Each trial consisted of the
operator positioning the robot at the starting poirthe lane, manually setting the mine sensor
to the correct height, and starting the mine secanand marking behaviors on the robot. Since
the repeated use of colored dye would produce swriuegarding the marks on the ground,
water was used instead of dye throughout the tedghe robot proceeded, test personnel
following the robot placed poker chips at the lamaof each wet spray mark with red poker
chips. These poker chips allowed personnel to atelyrmeasure distance from the center of the
dye spray to the center of mine as shown in Figuiehe water mark then dried before the next
trial. Throughout the experiment all mine locatiosaported to the OCU were checked and a
copy of the data log and a screen shot of the mgskirom the OCU were saved. A photograph
of each mine and their location was taken and eovaf each run was recorded. Data sheets
recorded meteorological data, mine marking ermiissed mines, false detections, and other
comments from those conducting the experiment.rAffte robot had completed its mission, it
was driven back to the start point by the operdifmintenance was conducted on the robot



between trials. At the conclusion of the trial thstance from each mine mark to the center of
the mine was measured and recorded.

Figure 7: Examples of Mine Marking and Burying &l

Results

There were four criteria to the tested requirementhis experiment: finding mines, marking
mines, reporting mines, and marking proofed labesing the 26 runs executed during the
experiment the robot correctly detected 124 mi@a®r the course of the experiment, seven
mines in the lane were not detected. The overaliess rate for detecting mines was 95%. Of
the seven mines not detected two were due to alifisation of the height of the sensors, two
were due to low battery levels on the sensor, hrektwere not detected during sharp turns to
avoid obstacles. All missed mines were at or tieaedge of the proofed lane. ARCS had a
single false detection during all the runs. Oneenwas detected and reported twice, once on the
leading edge of the mine and once on the trailohgee This gives a false detection rate of <1%.

All of the mines detected by ARCM System were ptgity marked on the ground. The distance
between the center of the physical mark and theecefhthe mine was measured for 91 mines as
shown in Appendix C. The average marking error 867 cm with a standard deviation of
8.56 cm. The mine diameter was 33.4 cm. For eathedtrials, the proven lane was marked in
the physical and digital environments as shownigufes 8 and 9.

Of the 124 mines detected only one mine was natadligreported to the OCU, the remainder
rest were automatically reported and logged. A tiéxtwith the UTM coordinates of each mine
was logged in a separate run file and screen sii@&ach run were made showing the location of
each mine as it relates to the robots internal (eap Figure 8).

The ARCM System was successful in all runs in aomeously negotiating the 50 meter course
and marking a proofed 1-meter lane. The 26 runsanaaverage completion time of 5.75

minutes with a 99% confidence interval of +/- Oriihutes. The maximum time taken was 6.367
minutes. Interestingly, the presence of obstaatethe course seemed to improve the speed at
which the robot performed. Closer examination efdiata showed that the speed up was not due



to the obstacles, but rather to the fact thatriaéstwith obstacles were performed on a wider
stretch of road. The navigation behaviors in thi€ Rllowd the robot to move faster since the
boundaries of the road were further apart. On geuhs without obstacles the average time to
complete was 6.058 minutes with a 99% confidentarval of 0.216 minutes. The 10 runs with

7 obstacles on the course showed an average coonpiiete of 5.267 minutes with a 99%
confidence interval of 0.585 minutes.

D Interface (2.4)
quit | U7

Default View
—r |

Fig. 8: Mine and Proofed Lane Display on OCU.

Figure 9: Proofed Lane Marking



When comparing the robot to current military opierad, the MANSCEN at Ft. Leonard Wood
reports that it would take approximately 25 minutesa trained soldier to complete the same
task accomplished by the robot, which gives abdauefold decrease in cycle time without
putting a human in harm’s way. Furthermore, a &disoldier performing a counter-mine task
can expect to discover 80% of the mines. The rolsolution raises this competency to 95%
mine detection.

Another interesting finding pertained to human inguhat the average level of human input
throughout the countermine exercises was less2awhen calculated based on time. The
TECO of the U.S. Army indicated that the ARCM Systachieved “very high levels of
collaborative tactical behaviors.” When the MANSCEpplied the “Autonomy Levels for
Unmanned Systems” rubric, which includes indicefeerator interaction, environmental
difficulty and task complexity, to evaluate the mleautonomy of the system, a level of 8-9 was
applied out of a possible 10.

Conclusion

The results of a rigorous, real-world experimeravséd that the proposed autonomous robot
countermine system performed admirably accuratelsking, both physically and digitally, 124
out of 131 buried mines in an average time of tkaa six minutes.

While these results are encouraging, it is impdramnderstand that the challenges of
countermine operations have by no means been ctahpsolved. One important caveat to the
work reported here is that the mines used hadlarhigtallic content. The need to find low-
metallic mines will require a more advanced sendoigoing collaboration with the NVESD at
Ft. Belvoir will result in a combined ground peraing radar and electromagnetic induction
sensor which could be used in the next phase®effort to improve mine sensing of low-
metallic mines. Another important caveat is thatthbot platform used for the effort reported
here does not meet the military’s need for ruggedn or for all-terrain mobility rather, the
presented tests were performed on an “unimprovegbalh.” To accomplish the same task in
cross-country terrain is also a subject of futuoeky

Finally, the U.S. Army Engineer School indicatedttthe next phase of research should support
a vertical float feature to maintain an exact heaftthe sensor head above the ground and that
they would like to see more collaborative UAV fupoas including terrain data and uses as a
communication relay.

References
[1] J. Allen. Mixed initiative interaction. IEEE telligent Systems, 15(4):14-23, 1999.

[2] Davor Antonic, Zeljko Ban, and Mario Zagar. Dieing robots - requirements and constraints. Autithaa
42(3-4), 2001.

[3] Y. Baudoin and E. Colon. Humanitarian deminargl robots. In IEEE International Conference ont@bn
Applications, pages 433-435, Trieste, Italy, Sejnemi998.

[4] J. Bradshaw, M. Sierhuis, A. Acquisti, P. Fetby R. Hoffman, R. Jeffers, D. Prescott, N. SArilJszok, and
R.V. Hoff. Adjustable autonomy and human-agent teark in practice: An interim report on space apgiicns. In
Agent Autonomy, pages 9-38. Kluwer, 2002.



[5] David Bruemmer, Douglas Few, Michael Goodriblonald Norman, Nilanjan Sarkar, Jean Scholtz, Billart,
Mark L. Swinson, and Holly Yanco. How to trust réddurther than we can throw them. In Proceedirfghe®
Conference on Human Factors in Computing Systerfid)(@ages 1576-1577, Vienna, Austria, 2004.

[6] David J. Bruemmer, D.D. Dudenhoeffer, and JriMa Dynamic autonomy for urban search and redeue.
Proceedings of the 2002 AAAI Mobile Robot Worksh&dmonton, Canada, August 2002.

[7] David J. Bruemmer, J. L. Marble, D.D. DudenHegfM.O. Anderson, and M.D. McKay. Mixed-initiagv
control for remote characterization of hazardousrenments. In Proceedings of the Hawaii Internadio
Conference on System Sciences, Waikoloa, Hawaiiyaly 2003.

[8] David J. Bruemmer, Julie L. Marble, DouglasFPew, Ron L. Boring, Miles C. Walton, and Curtis Wielsen.
Shared understanding for collaborative control.EEIEansactions on Systems, Man, and Cyberneticst-ARar
35(4):494-504, 2004.

[9] Jennifer L. Burke, Robin R. Murphy, Michael Doovert, and Dawn L. Riddle. Moonlight in miami:fi&ld
study of human-robot interaction in the contexanfurban search and rescue disaster responsadyaixercise.
Human-Computer Interaction, 19:85-116, 2004.

[10] H. Cruz, J. Lisboa, P. Santana, R. MalteBarata, and L. Flores. Two sustainable and comipiizbots for
humanitarian demining. 2005.

[11] Munjal Desai and Holly A. Yanco. Blending humand robot inputs for sliding scale autonomy. In
Proceedings of the IEEE International Workshop obd® and Human Interactive Communication (RO-MAN),
pages 537-542, Nashville, TN, 2005.

[12] Miles C. Walton Douglas A. Few, David J. Bruser. Improved human-robot teaming through fac#itat
initiative. In Proceedings of the 15th IEEE Intdioaal Symposium on Robot and Human Interactive
Communication, Hatfield, United Kingdom, Septemb@o6.

[13] Terry Fong, Charles Thorpe, and Charles B&otlaboration, dialogue, and human-robot interactla 10th
International Symposium of Robotics Research, Lep¥fictoria, Australia, November 2001.

[14] P. Gonzalez de Santos, E. Garcia, J. EstreraathM. A. Armada. DYLEMA: Using walking robotsrfo
landmien detection and location. International daliof Systems Science, 36(9):545-558, 2005.

[15] M.A. Goodrich, D.R. Olsen Jr., J.W. Crandalhd T.J. Palmer. Experiments in adjustable autondmy
Proceedings of the IJCAI-01 Workshop on Autonomgldgation, and Control: Interacting with Autonomous
Agents, pages 1624-1629, Seattle, WA, 2001. Mokgarimann.

[16] M. Hearst. Mixed-initiative interaction—trendsd controversies. IEEE Intelligent Systems, 14¢)23,
1999.

[17] Jin-Hyuk Hong, Youn-Suk Song, and Sung-Bae.Ghbierarchical bayesian network for mixed-iniiiat
human-robot interaction. In Proceedings of the IEEmRference on Robotics and Automation (ICRA), 3a8@08—
3813, Barcelona, Spain, 2005.

[18] Eric Horvitz. Principles of mixed-initative @sinterfaces. In Proceedings of the ACM SIGCHI feoence on
Human Factors in Computing Systems, pages 159-M@6,York, NY, 1999. ACM Press.

[19] David B. Kaber and Mica R. Endsley. The eféeat level of automation and adaptive automatiotnoman
performance, situation awareness, and workloaddynamic control task. Theoretical Issues in Ergoios
Science, 5(2), March-April 2004.

[20] K. Kato and S. Hirose. Develoment of the qugad walking robot, Titan-1X — mechanical designagpt and
appliation for humanitarian demining robot. Advashd®obotics, 15:191- 204.



[21] P.T. Kidd. Design of human-centered robotisteyns. In Mansour Rahimi and Waldemar Karwowskitoes)
Human Robot Interaction, pages 225-241. TaylorFamadcis, London, England, 1992.

[22] Kurt Konolige. Large-scale map-making. In Reedings of the National Conference on Al (AAAI)nShose,
CA, 2004.

[23] J.-D. Nicoud. Vehicles and robots for humarita demining. Industrial Robot: An Internationalidnal,
24(2):164-168, April 1997.

[24] J.D. Nicoud and M.K. Habib. The pemex-b autmoois demining robot: perception and navigatiorntegias.
In Proceedings of intelligent robots and systerages 419-424, Pittsburgh, PA, 1995.

[25] Curtis W. Nielsen and Michael A. Goodrich. Goaming the usefulness of video and map informaition
navigation tasks. In Proceedings of the 2006 HuRabet Interaction Conference, Salt Lake City, UT0@.

[26] Curtis W. Nielsen and Michael A. Goodrich. Tieg the usefulness of a pan-tilt-zoom (PTZ) caniefauman-
robot interactions. In Proceedings of the Humartdfaand Ergonomics Society 50th Annual Meetingy Sa
Francisco, CA, 2006. To appear.

[27] Curtis W. Nielsen, Michael A. Goodrich, andri®iall J. Rupper. Towards facilitating the use pba-tilt
camera on a mobile robot. In Proceedings of thh IHEE International Workshop on Robot and Human
Interactive Communication (RO-MAN), Nashville, TRQ05.

[28] K. Nonami. Development of mine detection romtmet-1l and Comet-IIl. In Proceedings of the 43KTE
Annual Conference, 2002.

[29] R. Parasuraman. Human use and abuse of autombt M. Mouloua and J. Koonce, editors, Human-
Automation Interaction: Research and practice. d&nth Associates, 1997.

[30] R. Parasuraman, T.B. Sheridan, and C. Wick&maodel for types and levels of human interactioth
automation. IEEE Transactions on Systems, ManGyiérnetics — Part A: Systems and Humans, 30(3)238B5,
May 2000.

[31] G. Rodriguez and C.Weishin. A new method taleate human-robot system performance. Autonomous
Robots, 14(2-3):165-178, 2003.

[32] Pedro Santana, Jose Barata, Hildebrando @mitonio Mestre, Joao Lisboa, and Luis Flores. Atimobot
system for landmine detection. In Proceedings eflibth IEEE International Conference on Emerging
Technologies and Factory Automation, 2005.

[33] P. Scerri, D. Pynadath, and M. Tambe. Adjugt@utonomy in real-world multi-agent environmerhts.
Proceedings of the fifth international conferenneaatonomous agents (Agents '01), 2001.

[34] B. Schnediderman and P. Maes. Direct manimnats. interface agents. Interactions, 4(5):421@B7.
[35] J. Scholtz and S. Bahrami. Human-robot intéoac development of an evaluation methodologytifier
bystander role of interaction. In Proceedings eflBEE International conference on Systems, Mad, an

Cybernetics, volume 4, pages 3212-3217, 2003.

[36] Brennen Sellner, Frederik W. Heger, Laura NatH Reid Simmons, and Sanjiv Singh. Coordinatedtim
agent teams and sliding autonomy for large-scaderably. Proceedings of the IEEE, 94(7):1425-1408062

[37] Thomas B. Sheridan. Telerobotics, automatm human supervisory control. the MIT Press, Caigby
MA, 1992.



[38] http://www.state.gov/t/pm/rls/fs/22182.htm

[39] Aaron Steinfeld. Interface lessons for fullydasemi-autonomous mobile robots. In Proceedingseo2004
IEEE International Conference on Robotics and Awtiom, New Orleans, LA, April 2004.

[40] Aaron Steinfeld, Terrence Fong, David Kabeichéel Lewis, Jean Scholtz, Alan Schultz, and Métha
Goodrich. Common metrics for human-robot interactio Proceedings of the Conference on Human-Robot
Interaction (HRI), pages 33—40, Salt Lake City, QU06.

[41] James Trevelyan. Robots and landmines. Indgli®obot: An International Journal, 24(2):114-12997.

[42] David D. Woods, James Tittle, Magnus Feil, Zn@| Roesler. Envisioning human-robot coordinatiorfuture
operations. IEEE Transactions on Systems, ManCyernetics, Part C, 34(2):210-218, May 2004.

[43] Holly A. Yanco, Michael Baker, Robert CaseyeBden Keyes, Philip Thoren, Jill L. Drury, DougkasFew,
Curtis W. Nielsen, and David J. Bruemmer. Analydgifuman-robot interaction for urban search anduesin
Proceedings of IEEE International Workshop on Saféecurity, and Rescue Robotics, Gaithersburg, MIDG.



Sensor Data
Servers

Sonar

Appendi x A: Sensor
Abstracti ons

Laser

| R Beans

Robot
Abstractions

Bump Sensors

Range
Abstraction

GPS

Movement
Abstraction

Wheel Encoders

Conpass

Attitude
Abstraction

Gyro

Local i zati on
Abstraction

Tilt

Resi stance to
Mot i on
Abstraction

Brake State

VWheel Torque

Canera Vi ew
Abstraction

Battery
Vol t age

Robot Heal th
Abstraction

Caner a Pose

Vi deo Dat a

Radi oret er

Ther mal Caner a

Radi ati on
Sensor

Ground
Penetrating
Radar

Met al Det ect or

Ther nonet er
Sensor

Mappi ng and
Local i zati on
Modul e

Envi r onnent
Abstractions

Qccupancy Gid
Abstraction

Obstruction
Abstraction

Envi r onment
Feature
Abstraction

Fol | ow Tar get
Abstraction

Waypoi nt/ Entity
Abstraction

Behavi or
Arbitration

(Appendi x B)

Communi cat i on
Modul e




Robot
Abstractions

Appendi x B: RI K Behavi

Range
Abstraction

or

Movenent
Abstraction

Guarded Mbdtion "

A 4

Mbodul ati on

Behavi or

Attitude
Abstraction

Local i zati on
Abstraction

Obst acl e Avoi dance
Behavi or

Resi stance to
Mot i on
Abstraction

CGet Unstuck
Behavi or

A 4

Canera Vi ew
Abstraction

Canera Tracki ng
Behavi or

Robot Heal th
Abstraction

Real - Ti ne
Cccupancy

Envi r onment
Abstractions

Change
Anal yzer

Cccupancy
Gid
Abstraction

Pat h

Obstruction
Abstraction

Pl anner

E

Envi r onnent
Feat ure
Abstraction

Fol | ow Pur sui t
Conduct

Virtual Rai
Conduct

-

Count er m ne
Conduct

-

Waypoi nt Fol | ow
Behavi or

Area Search
Behavi or

Fol | ow Tar get
Abstraction

\

Waypoi nt/
Entity
Abstraction

Renpt e Survey
Conduct

’é




APPENDIX C: A table showing mine marking accuracythe first 91 mines found.

Mine #6
Mine #1| Mine #2 | Mine #3| Mine #4 | Mine #5| Marking
Marking | Marking | Marking | Marking | Marking cm
cm Error{cm Error{cm Error|cm Errorfcm Error| Error
10 8 7 15 20 Miss
23 8 24 4 0 7
6 16 10 7 17 16
4 8 7 20 1 3
13 0 Missed 13 5 0
15 15 20 15 0 10
12 8 12 0 0 7
12 16 18 19 15 15
1 8 16 8 8 Missed
26 18 15 14 4 24
7 28 27 31 33 21
20 39 17 26 22 26
3 16 5 13 9 8
12 23 5 12 0 15
16 0 0 4 4 22
16 18 Missed 20 12 Missed
# of Marks 16 16 14 16 16 13
Average 12.25 14.31 13.07 13.81 9.38 13.38
St Dev 7.09 10.06 7.84 8.24 9.76 8.29
Cl (+/-) 99%| 5.22 7.41 6.31 6.07 7.19 7.02




